Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 323: 138257, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36868417

RESUMO

Silicon dioxide nanoparticles (nSiO2) are one of the widely utilized nanoparticle (NPSs) materials, and exposure to nSiO2 is ubiquitous. With the increasing commercialization of nSiO2, the potential risk of nSiO2 release to the health and the ecological environment have been attracted more attention. In this study, the domesticated lepidopteran insect model silkworm (Bombyx mori) was utilized to evaluate the biological effects of dietary exposure to nSiO2. Histological investigations showed that nSiO2 exposure resulted in midgut tissue injury in a dose-dependent manner. Larval body mass and cocoon production were reduced by nSiO2 exposure. ROS burst was not triggered, and the activities of antioxidant enzymes were induced in the midgut of silkworm exposure to nSiO2. RNA-sequencing revealed that the differentially expressed genes induced by nSiO2 exposure were predominantly enriched into xenobiotics biodegradation and metabolism, lipid, and amino acid metabolism pathways. 16 S rDNA sequencing revealed that nSiO2 exposure altered the microbial diversity in the gut of the silkworm. Metabolomics analysis showed that the combined uni- and multivariate analysis identified 28 significant differential metabolites from the OPLS-DA model. These significant differential metabolites were predominantly enriched into the metabolic pathways, including purine metabolism and tyrosine metabolism and so. Spearman correlation analysis and the Sankey diagram established the relationship between microbe and metabolites, and some genera may play crucial and pleiotropic functions in the interaction between microbiome and host. These findings indicated that nSiO2 exposure could impact the dysregulation of genes related to xenobiotics metabolism, gut dysbiosis, and metabolic pathways and provided a valuable reference for assessing nSiO2 toxicity from a multi-dimensional perspective.


Assuntos
Bombyx , Nanopartículas , Animais , Bombyx/metabolismo , Dióxido de Silício/metabolismo , Multiômica , Exposição Dietética , Nanopartículas/toxicidade
2.
Physiol Behav ; 261: 114077, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36638877

RESUMO

Age-related neurodegenerative diseases accompanied by learning and memory deficits are growing in prevalence due to population aging. Cellular oxidative stress is a common pathomechanism in multiple age-related disorders, and various antioxidants have demonstrated therapeutic efficacy in patients or animal models. Many plants and plant extracts possess potent antioxidant activity, but the compounds responsible are frequently unknown. Identification and evaluation of these phytochemicals is necessary for optimal targeted therapy. A recent study identified theaflavin-3,3'-digallate (TFDG) as the most potent among a large series of phytochemical antioxidants. Here we examined if TFDG can mitigate learning and memory impairments in the D-galactose model of age-related neurodegeneration. Experimental mice were injected subcutaneously with D-galactose (120 mg/kg) for 56 days. In treatment groups, different doses of TFDG were administered daily by gavage starting on day 29 of D-galactose injection. Model mice exhibited poor learning and memory in the novel object recognition and Y-maze tests, reduced brain/body mass ratio, increased brain glutamate concentration and acetylcholinesterase activity, decreased brain acetylcholine concentration, and lower choline acetyltransferase, glutaminase, and glutamine synthetase activities. Activities of antioxidant enzymes glutathione peroxidase and superoxide dismutase were also reduced, while the concentration of malondialdehyde, a lipid peroxidation product, was elevated. Further, antioxidant genes Nrf2, Prx2, Gsh-px1, and Sod1 were downregulated in brain. Each one of these changes was dose-dependently reversed by TFDG. TFDG is an effective antioxidant response inducer and neuroprotectant that can restore normal neurotransmitter metabolism and ameliorate learning and memory dysfunction in the D-galactose model of age-related cognitive decline.


Assuntos
Senilidade Prematura , Antioxidantes , Camundongos , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Antioxidantes/metabolismo , Galactose/toxicidade , Galactose/metabolismo , Acetilcolinesterase/metabolismo , Encéfalo/metabolismo , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/metabolismo , Estresse Oxidativo , Envelhecimento , Aprendizagem em Labirinto , Superóxido Dismutase/metabolismo
3.
Environ Health Prev Med ; 26(1): 103, 2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34635049

RESUMO

BACKGROUND: Exposure to the ionizing radiation (IR) encountered outside the magnetic field of the Earth poses a persistent threat to the reproductive functions of astronauts. The potential effects of space IR on the circadian rhythms of male reproductive functions have not been well characterized so far. METHODS: Here, we investigated the circadian effects of IR exposure (3 Gy X-rays) on reproductive functional markers in mouse testicular tissue and epididymis at regular intervals over a 24-h day. For each animal, epididymis was tested for sperm motility, and the testis tissue was used for daily sperm production (DSP), testosterone levels, and activities of testicular enzymes (glucose-6-phosphate dehydrogenase (G6PDH), sorbitol dehydrogenase (SDH), lactic dehydrogenase (LDH), and acid phosphatase (ACP)), and the clock genes mRNA expression such as Clock, Bmal1, Ror-α, Ror-ß, or Ror-γ. RESULTS: Mice exposed to IR exhibited a disruption in circadian rhythms of reproductive markers, as indicated by decreased sperm motility, increased daily sperm production (DSP), and reduced activities of testis enzymes such as G6PDH, SDH, LDH, and ACP. Moreover, IR exposure also decreased mRNA expression of five clock genes (Clock, Bmal1, Ror-α, Ror-ß, or Ror-γ) in testis, with alteration in the rhythm parameters. CONCLUSION: These findings suggested potential health effects of IR exposure on reproductive functions of male astronauts, in terms of both the daily overall level as well as the circadian rhythmicity.


Assuntos
Ritmo Circadiano/efeitos da radiação , Expressão Gênica/efeitos da radiação , Genitália Masculina/efeitos da radiação , Exposição à Radiação , Radiação Ionizante , Fenômenos Reprodutivos Fisiológicos/efeitos da radiação , Fatores de Transcrição ARNTL/genética , Fosfatase Ácida , Animais , Proteínas CLOCK/genética , Epididimo/efeitos da radiação , Glucosefosfato Desidrogenase , L-Iditol 2-Desidrogenase , L-Lactato Desidrogenase , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Membro 2 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , RNA Mensageiro/genética , Motilidade dos Espermatozoides/efeitos da radiação , Espermatozoides/efeitos da radiação , Testículo/enzimologia , Testículo/efeitos da radiação
4.
Chronobiol Int ; 38(12): 1745-1760, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34369206

RESUMO

In this paper, the chronotoxicity of radiofrequency fields (RF) in the pubertal testis development and the involved molecular pathways were investigated by exposing four-week-old mice to RF (1800 MHz, SAR, 0.50 W/kg) in the morning and evening of each day for three weeks. Then, pathological changes and functional indices within the testis were determined. We also used a long non-coding RNA (lncRNA) microarray and GO/KEGG pathway analyses to determine lncRNA expression profiles and predict their potential functions. The cis and trans regulation of lncRNAs were investigated, and an interaction network was constructed using Cytoscape software. RF exposure led to a range of pathological changes in the testes of adolescent mice, as testicular weights and daily sperm productions decreased, and the testosterone secretion reduced. Furthermore, RF induced dysregulation in the expression of testicular lncRNAs. We identified 615 and 183 differentially expressed lncRNAs that were associated with morning and evening exposure to RF, respectively. From 15 differential expression lncRNAs both in morning RF group and evening RF group, we selected 6 lncRNAs to be validated by quantitative reverse transcription PCR (qRT-PCR). The differentially expressed lncRNAs induced by morning RF exposure were highly correlated with many different pathways, including Fanconi syndrome, metabolic processes, cell cycle, DNA damage, and DNA replication. Trans-regulation analyses further showed that differentially expressed lncRNAs were involved in multiple transcription factor-regulated pathways, such as TCFAP4, NFkB, HINFP, TFDP2, FoxN1, and PAX5. These transcription factors have all been shown to be involved in the modulation of testis development, cell cycle progression, and spermatogenesis. These findings suggest that the extent to which 1800 MHz RF induced toxicity in the testes and changed the expression of lncRNAs showed differences between morning exposure and evening exposure. These data indicate that differentially expressed lncRNAs play crucial roles in the RF exposure damage to the developing pubertal testis. Collectively, our findings provide a better understanding of the mechanisms underlying the toxic effects of RF exposure on testicular development.


Assuntos
RNA Longo não Codificante , Animais , Ritmo Circadiano/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Masculino , Camundongos , RNA Longo não Codificante/genética , Espermatozoides , Testículo
5.
Wei Sheng Yan Jiu ; 49(5): 795-801, 2020 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-33070827

RESUMO

OBJECTIVE: To study effect of nano-selenium and nano-cerium(nano cerium oxide) on the spermatogenic ability of mice irradiated by 1800 MHz microwave radiation(MR). METHODS: Forty-two ICR mice were randomly divided into groups: blank control group, solvent control group, microwave radiation model group, low, medium and high dose groups of nano-selenium+nano-cerium. In joint effects groups of nano-selenium and nano-cerium, the nano-selenium solution(60, 120 and 240 µg/kg) and the nano-cerium oxide solution(15, 30, 60 µg/kg) were administered to the stomach at 7:30 in the morning and 18:30 in the evening, respectively. The blank control group was orally administered with an equal volume of distilled water, and the solvent control group and the MR group were orally administered with an equal volume of carboxymethylcellulose sodium solution. During the second week of gastric administration, the mice were exposed to microwave radiation(1800 MHz) for 2 h every day(specific absorption ratio: 0. 2986 W/kg). After MR treatment, the daily sperm production of testis, sperm motility and sperm deformity rate in epididymis were measured, and the testicular marker enzymes [G6 PDH(6-phosphatedehydrogenase), ACP(acid phosphatase), LDH(lactate dehydrogenase)], antioxidant indexes [CAT(catalase), MDA(malondialdehyde) and T-AOC(total antioxidant capacity)] in testicular tissue were analyzed. RESULTS: Compared with the solvent control group, MR led to the decrease of sperm motility and the increase of sperm deformity rate, decreased the enzymes activities of G6 PDH, ACP and CAT, increased LDH activity and MDA content, and decreased the T-AOC level in testicular tissue, and the differences were statistically significant(P<0. 05). Compared with the MR group, the joint action of nano-selenium and nano-cerium with medium dose increased the daily sperm production of testis((18. 98±1. 27) ×10~6/g) vs. (15. 53±1. 24) ×10~6/g), decreased the sperm deformity rate(11. 74%±0. 91% vs. 16. 84%±2. 05%), and the joint action of nano-selenium and nano-cerium with medium and high dose increased the sperm motility in epididymis(61. 98%±6. 33%, 54. 17±4. 38 vs. 45. 16%±5. 01%), and the differences were statistically significant(P<0. 05). Compared with the MR group, the joint action of nano-selenium and nano-cerium with low and medium dose increased the activity of ACP(11. 07±0. 98, 14. 85±1. 39 vs. 8. 72±0. 91 nmol/(min·mg prot), P<0. 05). The joint action of nano-selenium and nano-cerium with medium and high dose increased the activity of G6 PDH(24. 12±2. 06, 21. 36±3. 65 vs. 15. 11±1. 73 nmol/(min·mg prot), P<0. 05) and decreased the activity of LDH(15. 52±1. 17, 13. 51±1. 68 vs. 22. 46±2. 01 nmol/(min·mg prot), P<0. 05). The joint action of nano-selenium and nano-cerium with medium dose increased the activity of CAT(17. 92±2. 03 vs. 11. 69±0. 87 nmol/(min·mg prot), P<0. 05) and decreased the content of MDA(5. 17 ±0. 62 vs. 9. 03 ±0. 63 nmol/mg prot, P<0. 05). The joint action of nano-selenium and nano-cerium with low, medium and high dose increased the level of T-AOC(22. 06±1. 54, 29. 36±2. 39, 21. 01±2. 47 vs. 12. 88±1. 82 U/mg prot, P<0. 05). CONCLUSION: The joint addition of nano-selenium and nano-cerium can improve the reproductive function of male mice exposed to MR, and can effectively alleviate the changes of mouse testicular marker enzyme activity and the decline of antioxidant capacity caused by MR.


Assuntos
Selênio , Animais , Antioxidantes , Humanos , Masculino , Camundongos , Camundongos Endogâmicos ICR , Micro-Ondas , Motilidade dos Espermatozoides
6.
J Cell Biochem ; 120(11): 18600-18607, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31338882

RESUMO

Lung cancer (especially, non-small cell lung cancer [NSCLC]) is one of the most malignant cancers in the world. Hinesol is the major component of the essential oil of Atractylodes lancea (Thunb.) DC and possesses the most promising anticancer function. However, the effects and molecular mechanism of hinesol on antiproliferation in NSCLC cells has not been well understood. In this study, we found that hinesol effectively inhibited the A549 and NCI-H1299 cells in a dose- and time-dependent manner by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide assay. In addition, hinesol induced cell cycle arrest at G0/G1 phase and apoptosis assessed by flow cytometry in A549 cells. Furthermore, Western blot analysis showed that hinesol decreased phosphorylation of mitogen-activated protein kinase, extracellular signal-regulated kinase, IκBα, and p65 inhibited the expressions of Bcl-2, cyclin D1 and upregulated the expression of Bax. Based on these results, hinesol might be a potential drug candidate of anti-NSCLC for therapy.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Atractylodes/química , Proliferação de Células/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , NF-kappa B/metabolismo , Sesquiterpenos/farmacologia , Compostos de Espiro/farmacologia , Células A549 , Proteínas Reguladoras de Apoptose/metabolismo , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Estrutura Molecular , Extratos Vegetais/farmacologia , Fase de Repouso do Ciclo Celular/efeitos dos fármacos , Sesquiterpenos/química , Compostos de Espiro/química , Fatores de Tempo
7.
Int J Nanomedicine ; 14: 4601-4611, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31296989

RESUMO

Introduction: The ratio of Ce3+/Ce4+ in their structure confers unique functions on cerium oxide nanoparticles (CeO2NPs) containing rare earth elements in scavenging free radicals and protecting against oxidative damage. The potential of CeO2NPs to protect testosterone synthesis in primary mouse Leydig cells during exposure to 1,800 MHz radiofrequency (RF) radiation was examined in vitro. Methods: Leydig cells were treated with different concentrations of CeO2NPs to identify the optimum concentration for cell proliferation. The cells were pretreated with the optimum dose of CeO2NPs for 24 hrs and then exposed to 1,800 MHz RF at a power density of 200.27 µW/cm2 (specific absorption rate (SAR), 0.116 W/kg) for 1 hr, 2 hrs, or 4 hrs. The medium was used to measure the testosterone concentration. The cells were collected to determine the antioxidant indices (catalase [CAT], malondialdehyde [MDA], and total antioxidant capacity [T-AOC]), and the mRNA expression of the testosterone synthase genes (Star, Cyp11a1, and Hsd-3ß) and clock genes (Clock, Bmal1, and Rorα). Results: Our preliminary result showed that 128 µg/mL CeO2NPs was the optimum dose for cell proliferation. Cells exposed to RF alone showed reduced levels of testosterone, T-AOC, and CAT activities, increased MDA content, and the downregulated genes expression of Star, Cyp11a1, Hsd-3ß, Clock, Bmal1, and Rorα. Pretreatment of the cells with 128 µg/mL CeO2NPs for 24 hrs followed by RF exposure significantly increased testosterone synthesis, upregulated the expression of the testosterone synthase and clock genes, and increased the resistance to oxidative damage in Leydig cells compared with those in cells exposed to RF alone. Conclusion: Exposure to 1,800 MHz RF had adverse effects on testosterone synthesis, antioxidant levels, and clock gene expression in primary Leydig cells. Pretreatment with CeO2NPs prevented the adverse effects on testosterone synthesis induced by RF exposure by regulating their antioxidant capacity and clock gene expression in vitro. Further studies of the mechanism underlying the protective function of CeO2NPs against RF in the male reproductive system are required.


Assuntos
Antioxidantes/farmacologia , Cério/farmacologia , Células Intersticiais do Testículo/efeitos dos fármacos , Ondas de Rádio/efeitos adversos , Testosterona/biossíntese , Animais , Antioxidantes/metabolismo , Catalase/metabolismo , Proliferação de Células/efeitos dos fármacos , Cério/química , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Células Intersticiais do Testículo/fisiologia , Masculino , Malondialdeído/metabolismo , Camundongos Endogâmicos C57BL , Nanopartículas/química
8.
Fish Shellfish Immunol ; 92: 367-376, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31200070

RESUMO

Oxidative stress plays a crucial role in ammonia nitrogen toxicity. In this study, the beneficial effects of dietary nano cerium oxide (nano CeO2) as a potent antioxidant were examined in the Chinese mitten crab (Eriocheir sinensis). Crabs were fed a diet supplemented with 0, 0.2, 0.4, 0.8, 1.6, 3.2, 6.4, or 12.8 mg/kg nano CeO2 for 60 d. The optimum supplementation level of nano CeO2 that significantly increased weight gain rate and decreased feed coefficient was 0.8 mg/kg. This level also offered immune protection when crabs were kept under ammonia nitrogen stress and/or exposed to pathogen infection (Aeromonas hydrophila). Supplementation with 0.8 mg/kg of CeO2 (i) relieved pathological damage to the hepatopancreas; (ii) increased hemocyte counts, including total number of hemocytes, granulocytes, and hyalinocytes; (iii) decreased malondialdehyde content and increased antioxidant enzyme activities of superoxide dismutase and catalase in the hemolymph; (iv) increased the activities of lysozyme, acid phosphatase, and alkaline phosphatase in the hemolymph; and (v) increased gene and protein expression of cathepsin L in the hepatopancreas. Mortality increased when crabs were injected with bacteria under ammonia nitrogen stress, but dietary supplementation with 0.8 mg/kg nano CeO2 decreased the mortality rate. Thus, the results of this study suggested that dietary supplementation with nano CeO2 in crabs promoted growth and up-regulated immunity to bacterial infection under ammonia nitrogen stress.


Assuntos
Amônia/efeitos adversos , Braquiúros/efeitos dos fármacos , Cério/metabolismo , Imunidade Inata/efeitos dos fármacos , Nanopartículas Metálicas , Estresse Oxidativo/efeitos dos fármacos , Ração Animal/análise , Animais , Braquiúros/crescimento & desenvolvimento , Braquiúros/imunologia , Braquiúros/fisiologia , Cério/administração & dosagem , Cério/farmacologia , Dieta , Suplementos Nutricionais/análise , Relação Dose-Resposta a Droga , Nanopartículas Metálicas/administração & dosagem , Distribuição Aleatória
9.
Wei Sheng Yan Jiu ; 48(3): 482-487, 2019 May.
Artigo em Chinês | MEDLINE | ID: mdl-31133139

RESUMO

OBJECTIVE: To study the chronotoxicity of radio-frequency radiation(RF) on the plasma stress hormones and immune factors in mice. METHODS: A total of 72 healthy C57 BL mice with circadian rhythm were divided into twelve groups: 6 Sham group and 6 RF groups. RF groups were exposed to 1.8 GHz RF at 226 µW/cm~2 for 60 days with 2 h/day respectively at corresponding zeitgeber time(ZT 0:00, ZT 4:00, ZT 8:00, ZT 12:00, ZT 16:00, ZT 20:00). The Sham group mice were exposed to the same condition without electromagnetic signal. At the end of last RF exposure, blood samples were collected from each animal. The concentrations of plasma stress hormones(ACTH, CORT) and immune factors(GM-CSF, TNF-α) were determined by enzyme linked immunosorbent assay(ELISA) method. RESULTS: The daily average levels of ACTH, CORT, GM-CSF and TNF-α were 84.12, 60.14, 1112.02 and 594.49 ng/L, which were decreased to 62.07, 41.21, 84.18 and 305.08 ng/L after 60 days of RF exposure. Compared to sham-exposed animals, the daily average levels of ACTH, CORT, GM-CSF and TNF-α were all significantly decreased(P<0.05). Circadian rhythms in the secreting of CORT, GM-CSF, TNF-α were disappeared(P>0.05), circadian rhythms of ACTH was shifted in RF-exposed mice, with the amplitude reduced from 12.45 to 4.88 and peak time postponed from 1:39 to 5:29. CONCLUSION: 1.8 GHz RF may weaken the function of stress and immune, and disturb their circadian rhythmicities.


Assuntos
Ritmo Circadiano , Ondas de Rádio , Animais , Fatores Imunológicos , Camundongos
10.
J Nanobiotechnology ; 17(1): 41, 2019 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-30894193

RESUMO

BACKGROUND: Cerium oxide nanoparticles (CeO2 NPs) have potential application for use in biomedical and in various consumer products. However, it is largely unclear whether CeO2 NPs have effects on male reproductive function. METHODS: In this study, male mice were examined for toxicity, if any, following chronic oral administration of CeO2 NPs for 32 days. In each animal, epididymides were examined for sperm motility and DNA integrity. Bloods were tested for testosterone levels. Testicular tissues were collected to determine the element Ce content, the daily sperm production (DSP), marker enzymes such as ACP, G6PD, γ-GT and SDH, mRNA expression levels of steroidogenesis genes Star, P450scc, P450c17, 3ß-Hsd, and 17ß-Hsd, as well as steroidogenic factor-1 (SF-1) gene/protein levels. RESULTS: The results showed that CeO2 NPs (20 mg/kg and 40 mg/kg) increased the element Ce content in testis, the testis histopathological patterns and sperm DNA damage whereas decreased the testis weight, DSP and sperm motility. There were also remarkable reduction in testosterone levels and marker enzymes activities, down-regulated mRNA expression levels of several steroidogenesis genes such as Star, P450scc, P450c17, 3ß-Hsd, and 17ß-Hsd, as well as altered gene and protein expressions of SF-1. CONCLUSION: These results reveal the male reproductive toxicity of chronic exposure of CeO2 NPs in mice, hinting that the utilization of CeO2 NPs need to be carefully evaluated about their potential reproductive toxicity on the human health.


Assuntos
Cério/química , Nanopartículas Metálicas/toxicidade , Reprodução/efeitos dos fármacos , Fator Esteroidogênico 1/metabolismo , Animais , Cério/toxicidade , Dano ao DNA , Regulação da Expressão Gênica , Masculino , Camundongos Endogâmicos C57BL , Tamanho da Partícula , Motilidade dos Espermatozoides/efeitos dos fármacos , Espermatozoides/anormalidades , Fator Esteroidogênico 1/genética
11.
Reprod Toxicol ; 81: 229-236, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30125682

RESUMO

Exposure to radiofrequency fields (RF) has been reported to induce adverse effects on testosterone production and its daily rhythm. However, the mechanisms underneath this effect remain unknown. In this study, male mice were exposed to 1800 MHz radiofrequency fields (RF, 40 µW/cm2 power intensity and 0.0553 W/Kg SAR) 2 h per day for 32 days. The data suggested that RF exposure: (i) significantly reduced testosterone levels, (ii) altered the expression of genes involved in its synthesis (Star, P450scc, P450c17 and 3ß-Hsd) in testicular tissue, (iii) significantly reduced regulatory protein CaMKI/RORα. Similar observations were also made in cultured primary Leydig cells exposed in vitro to RF. However, all of these observations were blocked by CaMK inhibitor, KN-93, and ionomycin reversed the down-regulation effects on intracellular [Ca2+]i and CaMKI/RORα expression induced by RF exposure. Thus, the data provided the evidence that RF-induced inhibition of testosterone synthesis might be mediated through CaMKI/RORα signaling pathway. Capsule: CaMKI/RORα signaling pathway was involved in the inhibition of testosterone synthesis induced by RF exposure.


Assuntos
Proteína Quinase Tipo 1 Dependente de Cálcio-Calmodulina/metabolismo , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Ondas de Rádio , Testosterona/metabolismo , Animais , Benzilaminas/farmacologia , Proteína Quinase Tipo 1 Dependente de Cálcio-Calmodulina/genética , Células Cultivadas , Ionomicina/farmacologia , Células Intersticiais do Testículo/metabolismo , Células Intersticiais do Testículo/efeitos da radiação , Masculino , Camundongos Endogâmicos C57BL , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Transdução de Sinais/efeitos da radiação , Sulfonamidas/farmacologia
12.
Wei Sheng Yan Jiu ; 47(1): 113-118, 2018 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-29903235

RESUMO

OBJECTIVE: To study the effects of cerium oxide nanoparticles( CeO_2 NPs)on cognitive function in 48 hours of sleep deprived male mice and explore its mechanism. METHODS: Thirty-six healthy clean ICR male mice( four weeks old) were randomly divided into 6 groups: blank control group, solvent control group, sleep deprivation control group, low, medium and high dose groups of CeO_2 NPs. 1 m L of distilled water were given to mice of blank group, 1 m L of solvent were given to mice of solvent control and sleep deprivation control group, 1 mL of CeO_2 NPs solvent( 4, 8, 16 mg/kg) were administered to mice of low, medium and high dose groups of CeO_2 NPs. Each group of mice received intragastric administration for 30 days. On the 31 st day, a single platform water environment method was used for 48 hours of sleep deprivation on mice. Then, the cognitive ability of the mice was tested by Y-maze. Further, the antioxidant( CAT, MDA, T-AOC) and neurotransmitters( NO, Glu) in mice brain tissue were measured also. RESULTS: Compare with the solvent control group, 48 hours of sleep deprivation reduced the cognitive ability of mice [( 36 ± 2) times vs. ( 20 ± 2) times, P = 0. 0006; 10. 753%± 0. 031% vs. 24. 927% ± 0. 972%, P = 0. 00000045 ], CAT activity [( 78. 151 ±17. 683) nmol/mg prot vs. ( 198. 155 ± 14. 437) nmol/mg prot, P = 0. 0008]and the level of T-AOC [( 103. 630 ± 24. 209) U/mg prot vs. ( 264. 599 ± 50. 223) U/mg prot, P =0. 007], but improved the content of MDA [( 9. 499 ± 1. 249) nmol/mg prot vs. ( 6. 157± 0. 373) nmol/mg prot, P = 0. 0113 ], NO [( 11. 608 ± 1. 281) µmol/mg prot vs. ( 3. 628 ± 1. 064) µmol/mg prot, P = 0. 001]and Glu[( 4. 731 ± 0. 131) µg/mg prot vs. ( 4. 476 ± 0. 126) µg/mg prot, P = 0. 03] in the brain. Low, medium and high dose Ce O2 NPs enhanced cognitive performance of the sleep deprived mice. Among three dose groups, the medium dose groups most significantly improved the cognitive ability of mice[( 27 ± 2) times vs. ( 36 ± 2) times, P = 0. 005; 18. 743% ± 0. 245% vs. 10. 753% ±0. 031%, P = 0. 0000006 ], increased CAT activities [( 238. 065 ± 19. 393) nmol/mg prot vs. ( 78. 151 ± 17. 683) nmol/mg prot, P = 0. 00045] and T-AOC levels [( 210. 516± 11. 339) U/mg prot vs. ( 103. 630 ± 24. 209) U/mg prot, P = 0. 002], decreased MDA[( 6. 528 ± 1. 162) nmol/mg prot vs. ( 9. 499 ± 1. 249) nmol/mg prot, P = 0. 039], NO[( 5. 651 ± 0. 239) µmol/mg prot vs. ( 11. 608 ± 1. 281) µmol/mg prot, P = 0. 001]and Glu levels [( 4. 358 ± 0. 016) µg/mg prot vs. ( 4. 731 ± 0. 131) µg/mg prot, P = 0. 008]. CONCLUSION: Ce O2 NPs can improve the cognitive ability of sleep deprived male mice, improve the antioxidant capacity of brain, reduce free radical damage to the nerves of brain, and regulate the neurotransmitters of brain.


Assuntos
Cério/farmacologia , Cognição/efeitos dos fármacos , Nanopartículas , Privação do Sono , Animais , Antioxidantes , Masculino , Camundongos , Camundongos Endogâmicos ICR
13.
J Toxicol Environ Health A ; 80(23-24): 1331-1341, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29144200

RESUMO

The neurotoxic effects attributed to the pesticide fenvalerate (FEN) are well-established. The aim of this study was to determine whether melatonin (MLT) was able to protect against FEN-induced behavior, oxidative stress, apoptosis, and neurogenesis using zebrafish (Danio rerio) model. Zebrafish exposed to 100 µg/L FEN for 120 h exhibited decreased swimming activity accompanied by downregulated expression of neurogenesis-related genes (Dlx2, Shha, Ngn1, Elavl3, and Gfap), suggesting that neurogenesis were impaired. In addition, FEN exposure significantly elevated oxidative stress as evidenced by increased malondialdehyde levels, as well as activities of Cu/Zn superoxide dismutase (Cu/Zn SOD), catalase, and glutathione peroxidase. Acridine orange staining demonstrated that embryos treated with FEN for 120 h significantly enhanced apoptosis mainly in the brain. FEN also produced upregulation of the expression of the pro-apoptotic genes (Bax, Fas, caspase 8, caspase 9, and caspase 3) and decreased expression of the anti-apoptotic gene Bcl-2. MLT significantly attenuated the FEN-mediated oxidative stress, modulated apoptotic-regulating genes, and diminished apoptotic responses. Further, MLT blocked the FEN-induced effects on swimming behavior as well as on neurogenesis-related genes. In conclusion, MLT protected against FEN-induced developmental neurotoxicity and apoptosis by inhibiting pesticide-mediated oxidative stress in zebrafish.


Assuntos
Inseticidas/toxicidade , Melatonina/farmacologia , Nitrilas/toxicidade , Substâncias Protetoras/farmacologia , Piretrinas/toxicidade , Peixe-Zebra/metabolismo , Animais , Apoptose/efeitos dos fármacos , Embrião não Mamífero/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Natação , Poluentes Químicos da Água/toxicidade
14.
Fish Shellfish Immunol ; 54: 481-8, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27153751

RESUMO

Hypoxia is a relevant physiological challenge for crab culture, and the hemolymph plays a crucial role in response to the hypoxia. In a 60 d feeding trial, Chinese mitten crabs (Eriocheir sinensis) fed a diet containing 0.2 mg/kg nano-selenium (nanoSe) showed a significantly increased weight gain rate (WGR) and a reduced feed coefficient (FC) compared to those fed diets with 0, 0.1, 0.4, 0.8, and 1.6 mg/kg nanoSe. Another 90 d feeding trial was conducted to determine the influence of dietary nanoSe on the immune response in juvenile Chinese mitten crabs kept under the condition of hypoxia. The results showed that hypoxia stress resulted in significantly increased hemocyte counts (THC, LGC, SGC, and HC), expression levels of the hemocyanin gene and protein, lactic acid level, and antioxidant capacity (T-AOC activities, SOD activities, GSH-Px and GSH content) in hemolymph supernatant. When these crabs were infected with Aeromonas hydrophila bacteria, hypoxia exposure increased mortality, but it was alleviated by a diet supplemented with 0.2 mg/kg nanoSe. The up-regulative effects of nanoSe (0.2 mg/kg) on antioxidant capacity, hemocyte counts, and hemocyanin expression under hypoxia exposure were further strengthened throughout, whereas lactic acid levels induced by hypoxia stress were restored. Thus, the observations in this study indicate that the level of dietary nanoSe is important in regulating immunity and disease resistance in crabs kept under hypoxia stress.


Assuntos
Braquiúros/efeitos dos fármacos , Hemocianinas/metabolismo , Imunidade Inata/efeitos dos fármacos , Selênio/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Ração Animal/análise , Animais , Proteínas de Artrópodes/metabolismo , Dieta , Expressão Gênica/efeitos dos fármacos , Hemolinfa/efeitos dos fármacos
15.
Reprod Biomed Online ; 31(5): 638-46, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26386639

RESUMO

The aim of the present study was to elucidate whether the GATA-4/SF-1 signalling pathway is involved in the inhibitory effects of melatonin on testosterone production in both the TM3 Leydig cell line and in C57BL/6J mice. In-vitro experiments demonstrated that melatonin treatment significantly reduced testosterone levels in cell culture medium (P < 0.05 or P < 0.01); and decreased intracellular cyclic adenosine monophospha accumulation (P < 0.05 or P < 0.01) and mRNA/protein expression of GATA-4, SF-1 (NR5A1), StAR, P450SCC (CYP11A1) and 3ß-HSD (P < 0.05 or P < 0.01). These effects were blocked by N-acetyl-2-benzyltryptamin, a melatonin receptor antagonist. Similar effects of melatonin on testosterone production (P < 0.05 or P < 0.01) and down-regulation of transcription factors GATA-4 and SF-1 (P < 0.01) were also observed in mice treated with intratesticular injections of melatonin. Overall, the data suggest that the inhibitory effects of melatonin on testosterone production are mediated via down-regulation of GATA-4 and SF-1 expression.


Assuntos
Fator de Transcrição GATA4/metabolismo , Células Intersticiais do Testículo/efeitos dos fármacos , Melatonina/farmacologia , Transdução de Sinais/efeitos dos fármacos , Fator Esteroidogênico 1/metabolismo , Testosterona/biossíntese , Animais , Linhagem Celular , AMP Cíclico/metabolismo , Regulação para Baixo/efeitos dos fármacos , Células Intersticiais do Testículo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL
16.
Int J Environ Res Public Health ; 12(2): 2071-87, 2015 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-25685954

RESUMO

BACKGROUND: The potential health risks of exposure to Radiofrequency Fields (RF) emitted by mobile phones are currently of considerable public interest, such as the adverse effects on the circadian rhythmicities of biological systems. To determine whether circadian rhythms of the plasma antioxidants (Mel, GSH-Px and SOD) are affected by RF, we performed a study on male Sprague Dawley rats exposed to the 1.8 GHz RF. METHODS: All animals were divided into seven groups. The animals in six groups were exposed to 1.8 GHz RF (201.7 µW/cm² power density, 0.05653 W/kg specific absorption rate) at a specific period of the day (3, 7, 11, 15, 19 and 23 h GMT, respectively), for 2 h/day for 32 consecutive days. The rats in the seventh group were used as sham-exposed controls. At the end of last RF exposure, blood samples were collected from each rat every 4 h (total period of 24 h) and also at similar times from sham-exposed animals. The concentrations of three antioxidants (Mel, GSH-Px and SOD) were determined. The data in RF-exposed rats were compared with those in sham-exposed animals. RESULTS: circadian rhythms in the synthesis of Mel and antioxidant enzymes, GSH-Px and SOD, were shifted in RF-exposed rats compared to sham-exposed animals: the Mel, GSH-Px and SOD levels were significantly decreased when RF exposure was given at 23 and 3 h GMT. CONCLUSION: The overall results indicate that there may be adverse effects of RF exposure on antioxidant function, in terms of both the daily antioxidative levels, as well as the circadian rhythmicity.


Assuntos
Antioxidantes/metabolismo , Telefone Celular , Ritmo Circadiano , Ondas de Rádio/efeitos adversos , Animais , Biomarcadores , Masculino , Ratos , Ratos Sprague-Dawley
17.
Int J Radiat Biol ; 91(3): 270-6, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25347145

RESUMO

PURPOSE: To determine whether mice exposed to radiofrequency fields (RF) and then injected with a radiomimetic drug, bleomycin (BLM), exhibit adaptive response and provide some mechanistic evidence for such response. MATERIALS AND METHODS: Adult mice were exposed to 900 MHz RF at 120 µW/cm(2) power density for 4 hours/day for 7 days. Immediately after the last exposure, some mice were sacrificed while the others were injected with BLM 4 h later. In each animal: (i) The primary DNA damage and BLM-induced damage as well as its repair kinetics were determined in blood leukocytes; and (ii) the oxidative damage was determined from malondialdehyde (MDA) levels and the antioxidant status was assessed from superoxide dismutase (SOD) levels in plasma, liver and lung tissues. RESULTS: There were no indications for increased DNA and oxidative damages in mice exposed to RF alone in contrast to those treated with BLM alone. Mice exposed to RF+ BLM showed significantly: (a) reduced BLM-induced DNA damage and that remained after each 30, 60, 90, 120 and 150 min repair time, and (b) decreased levels of MDA in plasma and liver, and increased SOD level in the lung. CONCLUSIONS: The overall data suggested that RF exposure was capable of inducing adaptive response and mitigated BLM- induced DNA and oxidative damages by activating certain cellular processes.


Assuntos
Bleomicina/efeitos adversos , Dano ao DNA , Reparo do DNA , Ondas de Rádio/efeitos adversos , Adaptação Fisiológica/efeitos da radiação , Animais , Antineoplásicos/efeitos adversos , Cinética , Masculino , Malondialdeído/metabolismo , Camundongos , Camundongos Endogâmicos ICR , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/efeitos da radiação , Tolerância a Radiação , Radiobiologia , Superóxido Dismutase/metabolismo
18.
Wei Sheng Yan Jiu ; 43(1): 16-21, 2014 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-24564105

RESUMO

OBJECTIVE: To study the effects of nano-selenium (NSe) on cognition performance of mice exposed to 1800 MHz radiofrequency fields (RF). METHODS: Male mice were randomly divided into four groups, control and nano-Se low, middle and high dose groups (L, M, H). Each group was sub-divided into three groups, RF 0 min, RF 30 min and RF 120 min. Nano-se solution (2, 4 and 8 microg/ml) were administered to mice of L, M, H groups by intra-gastric injection respectively, 0.5 ml/d for 50 days, the conctral group were administered with distilled water. At the 21st day, the mice in RF subgroup were exposed to 208 microW/cm2 1800 MHz radiofrequency fields (0, 30 and 120 min/d respectively) for 30 days. The cognitive ability of the mice were tested with Y-maze. Further, the levels of MDA, GABA, Glu, Ach and the activities of CAT and GSH-Px in cerebra were measured. RESULTS: Significant impairments in learning and memory (P < 0.05) were observed in the RF 120 min group, and with reduction of the Ach level and the activities of CAT and GSH-Px and increase of the content of GABA, Glu and MDA in cerebrum. NSe enhanced cognitive performance of RF mice, decreased GABA, Glu and MDA levels, increased Ach levels, GSH-Px and CAT activities. CONCLUSION: NSe could improve cognitive impairments of mice exposed to RF, the mechanism of which might involve the increasing antioxidation, decreasing free radical content and the changes of cerebra neurotransmitters.


Assuntos
Transtornos Cognitivos/prevenção & controle , Cognição/efeitos da radiação , Campos Eletromagnéticos/efeitos adversos , Exposição Ambiental/análise , Selênio/farmacologia , Animais , Antioxidantes/metabolismo , Cognição/fisiologia , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/efeitos da radiação , Nanopartículas Metálicas , Camundongos , Neurotransmissores/metabolismo , Substâncias Protetoras/farmacologia , Ondas de Rádio
19.
Wei Sheng Yan Jiu ; 43(1): 110-5, 2014 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-24564122

RESUMO

OBJECTIVE: To study the chronotoxicity of 1800 MHz micrwave radiation on the male reproductive system. METHODS: Sixty healthy male C57 mice with circadian rhythm in a 12:12 h light-dark photoperiod were divided into false radiation group (Sham) and microwave radiation (MR) group exposed to 1800 MHz RF at 208 microW/cm2 power (SAR: 0 .2221 W/kg) density at different zeitgeber times of a day (ZT01:00, ZT05:00, ZT09 : 00, ZT13: 00, ZT17 : 00, ZT21 : 00) for continuous 32 days with 2 h/d. The testicular sperm head was counted with a microscope, and serum testosterone (T) and estradiol (E2) levels were measured by ELISA method. RESULTS: Compared with the sham group,microwave radiation induced reduced level in testicular sperm head count and serum testosterone, while the level of serum estradiol increased. Also, the circadian rhythms of testicular sperm head count and estradiol disappeared after the microwave radiation. CONCLUSION: 1800 MH2 microwave radiation may disturb the level as well as circadian rhythmicity of the reproductive functions in male mice.


Assuntos
Ritmo Circadiano/efeitos da radiação , Micro-Ondas/efeitos adversos , Espermatogênese/efeitos da radiação , Testículo/efeitos da radiação , Testosterona/sangue , Animais , Estradiol/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL
20.
Chronobiol Int ; 31(1): 123-33, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24117058

RESUMO

In this study, we explored the circadian effects of daily radiofrequency field (RF) exposure on reproductive functional markers in adult male Sprague-Dawley rats. Animals in circadian rhythm (as indicated by melatonin measurements), were divided into several groups and exposed to 1800 MHz RF at 205 µw/cm(2) power density (specific absorption rate 0.0405 W/kg) for 2 h/day for 32 days at different zeitgeber time (ZT) points, namely, ZT0, ZT4, ZT8, ZT12, ZT16 and ZT20. Sham-exposed animals were used as controls in the study. From each rat, testicular and epididymis tissues were collected and assessed for testosterone levels, daily sperm production and sperm motility, testis marker enzymes γ-GT and ACP, cytochrome P450 side-chain cleavage (p450cc) mRNA expression, and steroidogenic acute regulatory protein (StAR) mRNA expression. Via these measurements, we confirmed the existence of circadian rhythms in sham-exposed animals. However, rats exposed to RF exhibited a disruption of circadian rhythms, decreased testosterone levels, lower daily sperm production and sperm motility, down-regulated activity of γ-GT and ACP, as well as altered mRNA expression of cytochrome P450 and StAR. All of these observations were more pronounced when rats were exposed to RF at ZT0. Thus, our findings indicate potential adverse effects of RF exposure on male reproductive functional markers, in terms of both the daily overall levels as well as the circadian rhythmicity.


Assuntos
Ritmo Circadiano/efeitos da radiação , Fosfatase Ácida/metabolismo , Animais , Biomarcadores/metabolismo , Epididimo/efeitos da radiação , Masculino , Melatonina/biossíntese , Ondas de Rádio , Ratos , Ratos Sprague-Dawley , Motilidade dos Espermatozoides/efeitos da radiação , Espermatozoides/efeitos da radiação , Testículo/efeitos da radiação , Testosterona/biossíntese , gama-Glutamiltransferase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...